719 research outputs found

    An overview to Software Architecture in Intrusion Detection System

    Full text link
    Today by growing network systems, security is a key feature of each network infrastructure. Network Intrusion Detection Systems (IDS) provide defense model for all security threats which are harmful to any network. The IDS could detect and block attack-related network traffic. The network control is a complex model. Implementation of an IDS could make delay in the network. Several software-based network intrusion detection systems are developed. However, the model has a problem with high speed traffic. This paper reviews of many type of software architecture in intrusion detection systems and describes the design and implementation of a high-performance network intrusion detection system that combines the use of software-based network intrusion detection sensors and a network processor board. The network processor which is a hardware-based model could acts as a customized load balancing splitter. This model cooperates with a set of modified content-based network intrusion detection sensors rather than IDS in processing network traffic and controls the high-speed.Comment: 8 Pages, International Journal of Soft Computing and Software Engineering [JSCSE]. arXiv admin note: text overlap with arXiv:1101.0241 by other author

    Gravity and the Collapse of the Wave Function: a Probe into Di\'osi-Penrose model

    Full text link
    We investigate the Di\'osi-Penrose (DP) proposal for connecting the collapse of the wave function to gravity. The DP model needs a free parameter, acting as a cut-off to regularize the dynamics, and the predictions of the model highly depend on the value of this cut-off. The Compton wavelength of a nucleon seems to be the most reasonable cut-off value since it justifies the non-relativistic approach. However, with this value, the DP model predicts an unrealistic high rate of energy increase. Thus, one either is forced to choose a much larger cut-off, which is not physically justified and totally arbitrary, or one needs to include dissipative effects in order to tame the energy increase. Taking the analogy with dissipative collisional decoherence seriously, we develop a dissipative generalization of the DP model. We show that even with dissipative effects, the DP model contradicts known physical facts, unless either the cut-off is kept artificially large, or one limits the applicability of the model to massive systems. We also provide an estimation for the mass range of this applicability.Comment: 15 pages, 1 figure; v2 updated references and fixed minor mistakes in Eqs.(18) and (31)-(34), thanks to Marko Toros for pointing them ou

    Metastable Features of Economic Networks and Responses to Exogenous Shocks

    Full text link
    It has been proved that network structure plays an important role in addressing a collective behaviour. In this paper we consider a network of firms and corporations and study its metastable features in an Ising based model. In our model, we observe that if in a recession the government imposes a demand shock to stimulate the network, metastable features shape its response. Actually we find that there is a minimum bound where demand shocks with a size below it are unable to trigger the market out from recession. We then investigate the impact of network characteristics on this minimum bound. We surprisingly observe that in a Watts-Strogatz network though the minimum bound depends on the average of the degrees, when translated into the economics language, such a bound is independent of the average degrees. This bound is about 0.44Δ0.44 \DeltaGDP, where Δ\DeltaGDP is the gap of GDP between recession and expansion. We examine our suggestions for the cases of the United States and the European Union in the recent recession, and compare them with the imposed stimulations. While stimulation in the US has been above our threshold, in the EU it has been far below our threshold. Beside providing a minimum bound for a successful stimulation, our study on the metastable features suggests that in the time of crisis there is a "golden time passage" in which the minimum bound for successful stimulation can be much lower. So, our study strongly suggests stimulations to be started within this time passage.Comment: 13 pages, 10 figures, accepted for publication in PloS On

    The Schr\"odinger-Newton equation and its foundations

    Get PDF
    The necessity of quantising the gravitational field is still subject to an open debate. In this paper we compare the approach of quantum gravity, with that of a fundamentally semi-classical theory of gravity, in the weak-field non-relativistic limit. We show that, while in the former case the Schr\"odinger equation stays linear, in the latter case one ends up with the so-called Schr\"odinger-Newton equation, which involves a nonlinear, non-local gravitational contribution. We further discuss that the Schr\"odinger-Newton equation does not describe the collapse of the wave-function, although it was initially proposed for exactly this purpose. Together with the standard collapse postulate, fundamentally semi-classical gravity gives rise to superluminal signalling. A consistent fundamentally semi-classical theory of gravity can therefore only be achieved together with a suitable prescription of the wave-function collapse. We further discuss, how collapse models avoid such superluminal signalling and compare the nonlinearities appearing in these models with those in the Schr\"odinger-Newton equation.Comment: 17 pages, 3 figures, revised version (some minor changes

    Empirical Coordination in a Triangular Multiterminal Network

    Full text link
    In this paper, we investigate the problem of the empirical coordination in a triangular multiterminal network. A triangular multiterminal network consists of three terminals where two terminals observe two external i.i.d correlated sequences. The third terminal wishes to generate a sequence with desired empirical joint distribution. For this problem, we derive inner and outer bounds on the empirical coordination capacity region. It is shown that the capacity region of the degraded source network and the inner and outer bounds on the capacity region of the cascade multiterminal network can be directly obtained from our inner and outer bounds. For a cipher system, we establish key distribution over a network with a reliable terminal, using the results of the empirical coordination. As another example, the problem of rate distortion in the triangular multiterminal network is investigated in which a distributed doubly symmetric binary source is available.Comment: Accepted in ISIT 201
    corecore